M1. (a) (i) M1 iodine $O R I_{2} O R I_{3}^{-}$
Ignore state symbols
Credit M1 for "iodine solution"
M2
$\mathrm{Cl}_{2}+2 \mathrm{I}^{-} \longrightarrow 2 \mathrm{Cl}^{-}+\mathrm{I}_{2}$
OR
$1 / 2 \mathrm{Cl}_{2}+\mathrm{I} \longrightarrow \mathrm{Cl}^{-}+1 / 2 \mathrm{I}_{2}$
Penalise multiples in M2 except those shown
M2 accept correct use of I_{3}^{-}
M3 redox or reduction-oxidation or displacement
(ii) M1 (the white precipitate is) silver chloride

M1 must be named and for this mark ignore incorrect formula

M2 $\mathrm{Ag}^{+}+\mathrm{Cl} \longrightarrow \mathrm{AgCl}$
For M2 ignore state symbols
Penalise multiples
M3 (white) precipitate / it dissolves
OR colourless solution
Ignore references to "clear" alone
(b) (i) $\mathbf{M 1} \quad \mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{Cl}^{-} \longrightarrow 2 \mathrm{HCl}+\mathrm{SO}_{4}{ }^{2-}$

For M1 ignore state symbols
OR $\quad \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{Cl}^{-} \longrightarrow \mathrm{HCl}+\mathrm{HSO}_{4}^{-}$
Penalise multiples for equations and apply the list principle
OR $\mathrm{H}^{+}+\mathrm{Cl}^{-} \longrightarrow \mathrm{HCl}$
M2 hydrogen chloride $O R \mathrm{HCl} O R$ hydrochloric acid
(ii) M1 and M2 in either order

For M1 and M2, ignore state symbols and credit multiples
M1 21- $\longrightarrow \mathrm{I}_{2}+2 \mathrm{e}^{-}$

OR

$8 \mathrm{I}^{-} \longrightarrow 4 \mathrm{I}_{2}+8 \mathrm{e}-$
Do not penalise absence of charge on the electron Credit electrons shown correctly on the other side of each equation

$$
\mathrm{H}_{2} \mathrm{SO}_{4}+8 \mathrm{H}^{+}+8 \mathrm{e}^{-} \longrightarrow \mathrm{H}_{2} \mathrm{~S}+4 \mathrm{H}_{2} \mathrm{O}
$$

OR
$\mathrm{SO}_{4}{ }^{2-}+\mathbf{1 0 H}+\boldsymbol{8} \mathrm{e}^{-} \longrightarrow \mathrm{H}_{2} \mathrm{~S}+\mathbf{4} \mathrm{H}_{2} \mathrm{O}$
Additional equations should not contradict
M3 oxidising agent / oxidises the iodide (ions)
OR
electron acceptor
M4 sulfur $O R S O R S_{2} O R S_{8} O R$ sulphur
(iii) M1 The $\mathrm{NaOH} / \mathrm{OH}^{-}$/ (sodium) hydroxide reacts with / neutralises the $\mathrm{H}^{+} /$acid $/ \mathrm{HBr}$ (lowering its concentration)

OR a correct neutralisation equation for H^{+}or HBr with NaOH or with hydroxide ion
Ignore reference to NaOH reacting with bromide ions
Ignore reference to NaOH reacting with HBrO alone
M2 Requires a correct statement for M1
The (position of) equilibrium moves / shifts(from L to R)

- to replace the $\mathrm{H}^{+} /$acid / HBr that has been removed / lost
- $\quad O R$ to increase the $\mathrm{H}^{+} /$acid $/ \mathrm{HBr}$ concentration
- \quad OR to make more $\mathrm{H}^{+} /$acid $/ \mathrm{HBr} /$ product(s)
- $\quad O R$ to oppose the loss of H^{+}/ loss of product(s)
- $\quad O R$ to oppose the decrease in concentration of product(s)

In M2, answers must refer to the (position of) equilibrium shifts / moves and is not enough to state simply that it / the system / the reaction shifts to oppose the change.

M3 The (health) benefit outweighs the risk or wtte
OR
a clear statement that once it has done its job, little of it remains

OR

used in (very) dilute concentrations / small amounts / low doses

M2. (a) (i) $\mathrm{Cu}+4 \mathrm{HNO}_{3} \longrightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{NO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
Or multiples
Ignore state symbols
(ii) M1 $\mathrm{HNO}_{3}(+) 5$

M2 $\quad \mathrm{NO}_{2}(+) 4$
Ignore working out
M1 Credit (V)
M2 Credit (IV)
(iii) $\quad \mathrm{HNO}_{3}+\mathbf{H}^{+}+\mathrm{e}^{-} \longrightarrow \quad \mathrm{NO}_{2}+\mathbf{H}_{2} \mathrm{O}$

OR
$\mathrm{NO}_{3}{ }^{-}+\mathbf{2 H} \mathrm{H}^{+}+\mathrm{e}^{-} \longrightarrow \quad \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}$
Or multiples
Ignore state symbols
Ignore charge on the electron unless incorrect and accept loss of electron on the RHS
(b) (i) In either order

M1 Concentration(s) (of reactants and products) remain(s) constant / stay(s) the same / remain(s) the same / do(es) not change

> M2 Forward rate $=$ Reverse / backward rate
> For M1 accept [] for concentration
> NOT "equal concentrations" and NOT "concentration(s) is/are the same"
> NOT "amount"

Ignore "dynamic" and ignore "speed"
Ignore "closed system"
It is possible to score both marks under the heading of a single feature

(ii) M1

The (forward) reaction / to the right is endothermic or takes in / absorbs heat

OR
The reverse reaction / to the left is exothermic or gives out / releases heat

M2 depends on correct M1 and must refer to temperature/heat
The equilibrium shifts / moves left to right to oppose the increase in temperature

M2 depends on a correct statement for M1
For M2, the equilibrium shifts/moves
to absorb the heat $O R$
to lower the temperature $O R$
to cool the reaction

M3.(a) (i) M1 0
M2 (+) 5
Accept Roman V for M2
(ii) $\mathrm{I}_{2}+10 \mathrm{H} \longrightarrow 2 \mathrm{HI}+10 \mathrm{~N}+4 \mathrm{H}$
$\begin{array}{lllll}\mathrm{NO}_{3} & \mathrm{O}_{3} & \mathrm{O}_{2} & { }_{2} \mathrm{O}\end{array}$

Accept multiples
(b) $\mathrm{M} 1 \mathrm{IO}_{3}^{-}+6 \mathrm{H}^{+}+5 \mathrm{I}^{-} \longrightarrow 3 \mathrm{I}_{2}+3 \mathrm{H}_{2} \mathrm{O}$

For M1, ignore state symbols
Credit multiples
Accept $21 / I_{2}+1 / 2 I_{2}$ as alternative to $3 I_{2}$
Electrons must be cancelled
M2 $\mathrm{NaIO}_{3} \mathrm{OR} \mathrm{IO}_{3}-\mathrm{OR}$ iodate ions OR iodate(V) ions etc.
For M2 Do not penalise an incorrect name for the correct oxidising agent that is written in addition to the formula.

Accept "the iodine in iodate ions" but NOT "iodine" alone
Accept "the iodine / I in iodate ions" but NOT "iodine" alone
(c) (i) lodine $O R \mathrm{I}_{2}$

Insist on correct name or formula
(ii) $\mathrm{H}_{2} \mathrm{SO}_{4}+6 \mathrm{H}^{+}+6 \mathrm{e}^{-} \longrightarrow \mathrm{S}+4 \mathrm{H}_{2} \mathrm{O}$

Ignore state symbols
$\mathrm{SO}_{4}^{2-}+8 \mathrm{H}^{2-}+6 \mathrm{e}^{-} \longrightarrow \mathrm{S}+4 \mathrm{H}_{2} \mathrm{O}$
Credit multiples
Do not penalise absence of charge on the electron
(d) hydrogen sulfide OR $\mathrm{H}_{2} \mathrm{~S}$ $O R$ hydrogen sulphide

Ignore state symbols
No multiples
(ii) The (yellow) precipitate / solid / it does not dissolve / is insoluble ignore "nothing (happens)"

OR turns to a white solid
ignore "no observation"
$O R$ stays the same
OR no (visible/ observable) change
OR no effect / no reaction
(iii) The silver nitrate is acidified to

- react with / remove (an)ions that would interfere with the test Ignore reference to "false positive"
- prevent the formation of other silver precipitates / insoluble silver compounds that would interfere with the test

Do not penalise an incorrect formula for an ion that is written in addition to the name.

- remove (other) ions that react with the silver nitrate
- react with / remove carbonate / hydroxide / sulfite (ions) If only the formula of the ion is given, it must be correct
(f) (i) An electron donor

Penalise "electron pair donor"
OR (readily) donates / loses / releases / gives (away) electron(s)
Penalise "loss of electrons" alone
Accept "electron donator"
(ii) $\mathrm{Cl}_{2}+2 \mathrm{e}^{-} \longrightarrow 2 \mathrm{Cl}^{-}$

Ignore state symbols
Do not penalise absence of charge on electron
Credit $\mathrm{Cl}_{2} \longrightarrow 2 \mathrm{Cl}^{-}-2 e^{-}$
Credit multiples
(iii) For M1 and M2, iodide ions are stronger reducing agents than chloride ions, because

Ignore general statements about Group VII trends or about halogen molecules or atoms. Answers must be specific

M1 Relative size of ions
$C E=0$ for the clip if "iodine ions / chlorine ions" QoL
lodide ions / they are larger /have more electron levels(shells)(than chloride ions) / larger atomic / ionic radius
$C E=0$ for the clip if "iodide ions are bigger molecules / atoms" QoL

OR electron to be lost/outer shell/level (of the iodide ion) is further the nucleus

OR iodide ion(s) / they have greater / more shielding
Insist on iodide ions in M1 and M2 or the use of it / they / them, in the correct context (or chloride ions in the converse argument)

OR converse for chloride ion
M2 Strength of attraction for electron(s)
Must be comparative in both M1 and M2
The electron(s) lost /outer shell/level electron from (an) iodide ion(s) less

strongly held by the nucleus compared with that lost from a chloride ion

$O R$ converse for a chloride ion
(ii) M1 Environmental problem

Acid rain
OR
An effect either from acid rain or from an acidic gas in the atmosphere.

M2 Use
SO_{2} could be used to make / to form / to produce (or wtte) $\mathrm{H}_{2} \mathrm{SO}_{4}$ / sulfuric acid

OR
To make / to form / to produce (or wtte) gypsum / CaSO4 or plaster of Paris / plaster board

Ignore references to the greenhouse effect
Penalise reference to the ozone layer using the list principle
(iii) $\mathrm{MoO}_{3}+3 \mathrm{H}_{2} \rightarrow \mathrm{Mo}+3 \mathrm{H}_{2} \mathrm{O}$

Allow multiples
Ignore state symbols
(iv) One from
H_{2} is

- Explosive
- (in)flammable
- easily ignited

Ignore "burns"
(b) (i) To allow ions to move (when molten)

OR
Ions cannot move in the solid
(ii) $\mathrm{Ca}^{2+}+2 \mathrm{e} \longrightarrow \mathrm{Ca}$

Or multiples
Ignore state symbols
Ignore charge on the electron unless incorrect and accept loss of two electrons on the RHS
(iii) (High) electricity / electrical energy (cost)

Ignore "energy" and ignore "current"

M5.(a) (i) reduction OR reduced OR redox OR reduction-oxidation Not "oxidation" alone

(ii) $\mathrm{Fe}^{3+}+3 \mathrm{e}^{-} \longrightarrow \mathrm{Fe}$

Ignore state symbols
Do not penalise absence of charge on electron
Credit $\mathrm{Fe}^{3+} \longrightarrow \mathrm{Fe}-3 e^{-}$
Credit multiples
1
(b) (i) Because (one of the following)

CO is not the only product $O R$
Reference to "incomplete combustion to form CO" does not answer the question
(Some) complete combustion (also)occurs OR
CO_{2} is (also) formed
Further oxidation occurs
(ii) The enthalpy change / heat (energy) change at constant pressure in a reaction
is independent of the route / path taken (and depends only on the initial and final states)

1
(iii) M1 The enthalpy change / heat change at constant pressure when 1 molof a compound / substance / element
For M1, credit correct reference to molecule/s or atom/s
M2 is burned completely / undergoes complete combustion in (excess) oxygen

M3 with all reactants and products / all substances in standard states For M3
Ignore reference to 1 atmosphere
OR all reactants and products / all substances in normal / specified states
under standard conditions / 100 kPa / 1 bar and specified T / 298 K
(c) M1 (could be scored by a correct mathematical expression which must have all $\Delta \underline{H}$ symbols and the Σ)

Correct answer gains full marks
Credit 1 mark ONLY for -1 ($\mathrm{kJ} \mathrm{mol}^{-1}$)
M1 $\Delta H_{r}=\sum \Delta H_{f}$ (products) $-\sum \Delta H_{\mathrm{f}}$ (reactants)
Credit 1 mark ONLY for - $27\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ i.e. assuming value for $\mathrm{Fe}(\mathrm{l})=0$

OR correct cycle of balanced equations with $2 \mathrm{Fe}, 3 \mathrm{C}$ and $\mathbf{3 O}_{2}$
M2 $\Delta H_{r}=2(+14)+3(-394)-(-822)-3(-111)$
$=\mathbf{2 8} \mathbf{- 1 1 8 2 + 8 2 2 + 3 3 3}$
(This also scores M1)
M3 = (+) $1\left(\mathbf{k J ~ m o l}^{-1}\right)$
(Award 1 mark ONLY for - 1)
(Award 1 mark ONLY for - 27)
For other incorrect or incomplete answers, proceed as follows

- check for an arithmetic error (AE), which is either a transposition error or an incorrect multiplication; this would score 2 marks (M1 and M2)
- If no $A E$, check for a correct method; this requires either a correct cycle with $2 \mathrm{Fe}, 3 \mathrm{C}$ and $3 \mathrm{O}_{2} \mathrm{OR}$ a clear statement of M1 which could be in words and scores only M1
(d) (i) $\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \quad \mathrm{CO}_{2}(\mathrm{~g})$

State symbols essential
Possible to include C(s, graphite)
(ii) These two enthalpy changes are for the same reaction / same equation / same reactants and products

Penalise reference to CO_{2} being produced by a different route

OR
They both make one mole of carbon dioxide only from carbon and oxygen
(or this idea clearly implied)

"both form CO_{2} " is not sufficient (since other products might occur e.g.CO)
 $O R$

The same number and same type of bonds are broken and formed

